Gradient search non-orthogonal approximate joint diagonalization algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new non-orthogonal approximate joint diagonalization algorithm for blind source separation

A new algorithm for approximate joint diagonalization of a set of matrices is presented. Using a weighted leastsquares (WLS) criterion, without the orthogonality constraint, it is compared with an analoguous algorithm for blind source separation (BSS). The criterion of our algorithm is on the separating matrix while the other is on the mixing matrix. The convergence of our algorithm is proved u...

متن کامل

Approximate Joint Diagonalization Using a Natural Gradient Approach

We present a new algorithm for non-unitary approximate joint diagonalization (AJD), based on a “natural gradient”-type multiplicative update of the diagonalizing matrix, complemented by step-size optimization at each iteration. The advantages of the new algorithm over existing non-unitary AJD algorithms are in the ability to accommodate non-positive-definite matrices (compared to Pham’s algorit...

متن کامل

Non-orthogonal tensor diagonalization

Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of the tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetric diagonal...

متن کامل

Simple LU and QR Based Non-orthogonal Matrix Joint Diagonalization

A class of simple Jacobi-type algorithms for non-orthogonal matrix joint diagonalization based on the LU or QR factorization is introduced. By appropriate parametrization of the underlying manifolds, i.e. using triangular and orthogonal Jacobi matrices we replace a high dimensional minimization problem by a sequence of simple one dimensional minimization problems. In addition, a new scale-invar...

متن کامل

A Novel Non-orthogonal Joint Diagonalization Cost Function for ICA

We present a new scale-invariant cost function for non-orthogonal joint-diagonalization of a set of symmetric matrices with application to Independent Component Analysis (ICA). We derive two gradient minimization schemes to minimize this cost function. We also consider their performance in the context of an ICA algorithm based on non-orthogonal joint diagonalization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsinghua Science and Technology

سال: 2007

ISSN: 1007-0214

DOI: 10.1016/s1007-0214(07)70173-6